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Abstract
Datacenters are under-utilized, primarily due to unused re-
sources on over-provisioned nodes of latency-critical jobs.
Such idle resources can be used to run batch data analytic
jobs to increase datacenter utilization, but these transient re-
sources must be evicted whenever latency-critical jobs re-
quire them again. Resource evictions often lead to cascading
recomputations, which is usually handled by checkpointing
intermediate results on stable storages of eviction-free re-
served resources. However, checkpointing has major short-
comings in its substantial overhead of transferring data back
and forth. In this work, we step away from such approaches
and focus on observing the job structure and the relation-
ships between computations of the job. We carefully mark
the computations that are most likely to cause a large number
of recomputations upon evictions, to run them reliably us-
ing reserved resources. This lets us retain corresponding in-
termediate results effortlessly without any additional check-
pointing. We design Pado, a general data processing engine,
which carries out our idea with several optimizations that
minimize the number of additional reserved nodes. Evalua-
tion results show that Pado outperforms Spark 2.0.0 by up to
5.1×, and checkpoint-enabled Spark by up to 3.8×.

1. Introduction
Companies like Amazon, Facebook, Google, and Microsoft
are continuously investing billions of dollars to increase
the size and the capability of their datacenters to keep up
with the ever-increasing demand in popular online services
and complex data analytic workloads. Although the total
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amount of computing resources are greatly increasing with
the investments, a large portion of resources in datacenters
such as CPU and memory are left unused. A major reason
is that latency-critical (LC) jobs, such as user-facing search
engine services, are over-provisioned with excess resources
in order to be responsive even at load spikes. However, the
resources are actually left idle at most of the times [19, 25].

To increase datacenter utilization, researchers have devel-
oped runtime resource isolation and monitoring mechanisms
to run batch jobs, such as data analytic jobs, on the unused
idle resources of the LC jobs [19, 25, 30]. However, when
LC jobs require resources again, the tasks of batch jobs run-
ning on these resources need to be evicted. From this prop-
erty, we categorize such eviction-prone resources as tran-
sient resources. Although it is most ideal to use transient re-
sources most aggressively, it leads to frequent evictions with
the fluctuation of LC jobs. Indeed, based on the assumption
that transient resources run on the unused resources of LC
jobs, our analysis of a Google datacenter trace [27] shows
that evictions can occur only a few minutes after the batch
jobs are newly allocated with transient resources.

Many distributed data processing engines [12, 15, 31]
have been introduced to run various data analytics jobs, but
they were not designed to handle such high rates of evic-
tions. Most engines handle evictions through recomputing
from the last available intermediate result of previous com-
putations. However, such fault-tolerance mechanisms are in-
effective with transient resources, as intermediate results are
repeatedly lost under frequent evictions, and requires numer-
ous cascading recomputations to recover the lost data. This
notably delays jobs from completion and causes a great deal
of inefficiency in resource usages.

As a solution, recent works like Flint [23] and TR-
Spark [29] focus on using additional nodes of eviction-free
reserved resources as storages to checkpoint intermediate re-
sults. This allows computations to resume the work from the
last checkpointed data. Nonetheless, checkpointing is very
expensive for data-intensive workloads, since checkpointing
requires transferring large amounts of data back and forth,
and incurs substantial network and disk overhead. To allevi-
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ate the overhead, such systems introduce various techniques
to decide the optimal amount of checkpointing. They predict
eviction costs to selectively checkpoint where evictions in-
cur high recomputation costs. However, if evictions of tran-
sient resources occur frequently, it forces checkpointing to
be done repeatedly even with such techniques.

In this work, we step away from such approaches and fo-
cus on observing the job structure and the relationship be-
tween the computations of the job. Generally, data process-
ing engines take an arbitrary DAG (Directed Acyclic Graph)
of computations as its workload, where each vertex repre-
sents an operator or an execution, and each edge represents
the dependency of data flow. Instead of checkpointing inter-
mediate results, we focus on observing the DAG of compu-
tations to use the additional reserved resources to selectively
run the computations that are most likely to cause high re-
computation costs once evicted. For example, as many tasks
are involved in a shuffling edge, a single eviction of a task
can lead to a large number of recomputations of its depen-
dent tasks, and we choose to run such operators reliably. As
a result, our approach reliably retains corresponding inter-
mediate results effortlessly on reserved resources.

This idea is embodied in a general-purpose data process-
ing engine called Pado. Pado consists of two main compo-
nents: the Pado Compiler and Runtime. The compiler takes
input programs and analyzes their derived logical DAGs to
select and place a set of operators that are more likely to
cause high recomputation costs on reserved resources, and
the rest on transient resources. Then, the logical DAG is
partitioned into stages based on the placement information,
each of which acts as a unit of execution. Using the DAG
of stages, the runtime generates physical execution plans
and schedules the generated tasks across combinations of
reserved and transient resources. During the execution, the
outputs of the tasks placed on transient resources are trans-
ferred as soon as they are completed to the tasks allocated on
reserved resources so that they can quickly escape from the
threat of evictions. The runtime also provides several opti-
mizations, such as task input caching and task output partial
aggregation, to reduce the load and to minimize the amount
of additional reserved resources.

We have integrated Pado with several big data open
source projects, in order to facilitate real-world deploy-
ments. Our implementation supports programs written with
Beam [1], a programming model initially developed by the
Google Dataflow [2] team, and runs on various datacenter
resource managers like Mesos [14] and Hadoop YARN [5]
by using the REEF library [26].

We evaluated Pado with several real-world applications
on a cluster of Amazon EC2 instances, which we set up to
simulate a datacenter environment with transient resources.
We obtained the transient container lifetimes by analyzing
a Google datacenter trace [27]. The results show that under
a high rate of evictions, Pado outperforms Spark 2.0.0 [8]

by up to 5.1× and checkpoint-enabled Spark, which encom-
passes ideas proposed by Flint [23], by up to 3.8×. Using
Pado, datacenters can greatly increase utilization through ef-
fectively running batch jobs using wasted idle resources ag-
gressively collected from datacenters.

2. Background
In this section, we introduce how transient resources are used
in datacenter environments that we assume, and the behavior
of different data processing engines in them.

2.1 Resources on Datacenters
We target datacenters in which resource managers [14, 24,
25] manage computing resources such as CPU, memory, net-
work, and disk on a large number of nodes. The resource
manager collects and allocates containers, each of which is
a slice of resources of a node, to set up an environment for
running heterogeneous jobs. Normally, each of the contain-
ers is reserved for a job until the job voluntarily releases it
to be collected by the resource manager.

Latency-critical (LC) jobs, which have strict service-level
objective (SLO) latency bounds, use containers with over-
provisioned resources to meet the SLOs at all times, even
at load spikes. An example LC job is a user-facing search
engine service that needs to responsively return search query
results to its customers at any time of the day. However, as
the average load is much smaller than at load spikes, a large
portion of resources are regularly left unused, making the
datacenter under-utilized [21, 25].

To address this problem, resource managers like Borg and
Mesos borrow the regularly unused resources from LC jobs,
and use the resources to run new containers [14, 25]. How-
ever, such containers differ from the usual reserved contain-
ers which are guaranteed to be available for the job. Once
LC jobs require the resources again, they must be yielded
to the original LC jobs to meet their SLOs. Although re-
source managers allow some types of resources, like CPUs,
to be throttled in such situations, other types of resources,
like memory, have to be evicted [14, 19, 25]. In this paper,
we focus on the eviction aspect and call those containers vul-
nerable to evictions as transient containers. We assume all
state in transient containers, including those saved on their
local disks, gets destroyed upon evictions [14].

To obtain transient container lifetimes and their eviction
rates in real-world datacenters, we analyzed a Google dat-
acenter trace of average memory usage records given in 5-
minute intervals [27]. However, as we found 5-minute in-
tervals overly coarse-grained compared to real-world envi-
ronments, where resources are immediately returned to LC
tasks as soon as they are needed, we have applied the B-
spline function to acquire memory usage records in a more
fine-grained 1-minute intervals, which is commonly used for
curve-fitting of experimental data [11]. Considering LC jobs
as those tagged as the most latency-sensitive and the highest-
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Figure 1. CDFs of transient container lifetimes over differ-
ent safety margins.

Safety Margin 0.1% 1% 5%
10th Percentile 1 min 1 min 1 min
50th Percentile 2 mins 10 mins 20 mins
90th Percentile 19 mins 64 mins 276 mins

Table 1. Time to different percentiles of transient container
lifetimes over different safety margins.

Safety Margin Baseline 0.1% 1% 5%
Collected Mem 26.0% 25.9% 25.3% 22.7%

Table 2. Collected idle memory from total memory allo-
cated to LC jobs over different safety margins. Baseline in-
dicates collection of all idle memory.

priority jobs, we observed the containers of the LC jobs. As-
suming that transient containers run on the unused resources
of the LC job containers, we were able to figure out when the
transient containers were evicted, by applying the technique
introduced in Borg using safety margins [25]. Here, we set
up transient containers with the unused memory in each of
the LC job containers, while leaving a portion, the buffer
memory, untouched to prevent evictions from negligible LC
job fluctuations. The maximum size of the buffer memory
is given by (total LC mem × safety margin), thus the
safety margin indicates the percentage of the memory that
we try to leave intact. Under this condition, once the mem-
ory usage of a LC job decreases, the transient container on
the same LC job container is additionally reallocated with
the increased unused memory. On the other hand, if the LC
job requires more memory, exceeding the value of the buffer
memory, the transient container has to be evicted, as it indi-
cates resource conflict.

With this assumption, we derived cumulative distribution
functions (CDF) of transient container lifetimes and their
eviction rates with three different safety margins, as depicted
in Figure 1 and Table 1. Here, lower safety margin indicates
aggressive resource collection, which leads to higher data-
center utilization. The 0.1% safety margin indicates that we
aggressively use almost all the available idle resources, con-
sisted of around 25.9% of the memory allocated to LC jobs
as shown in Table 2. However, the 0.1% safety margin re-

sults in a high eviction rate, where most transient contain-
ers are evicted within half an hour. This implies that evic-
tions occur much more frequently with transient contain-
ers compared to other environments that previous works as-
sume [23, 29]. Such environments are mainly spot instances,
which are revocable virtual machines that cloud providers
like Amazon Web Services (AWS) provide at a lower cost
compared to regular on-demand instances. Unlike transient
containers, spot instances are usually revoked at an hourly
or at a more moderate basis. Consequently, to effectively use
transient containers and increase datacenter utilization, it is
crucial for data processing engines to handle frequent evic-
tions and complete their workloads with minimum delays.

2.2 Data Processing Engines
A plethora of distributed data processing engines [12, 15, 31]
have been introduced to run batch data analytics jobs. They
allow users to write dataflow programs with high level lan-
guages. In general, dataflow programs can be represented
as logical DAGs of computations, in which each vertex rep-
resents an operator that processes data, and each edge rep-
resents the dependency of data flow between the operators.
Data processing engines transform and run the logical DAGs
as physical DAGs in which each operator is expanded into
multiple parallel tasks to be distributed and run on contain-
ers, and each dependency is converted into a physical data
transfer between the corresponding tasks.

In logical DAGs, we define four types of dependencies:
(1) one-to-one, (2) one-to-many, (3) many-to-one, and (4)
many-to-many dependency. (1) First, the one-to-one depen-
dency describes a relation where each of the parent tasks
only has a single child task and vice versa. (2) The one-to-
many dependency describes a relation in which the results
of the parent tasks are transferred to all tasks of the child
operator. (3) The many-to-one dependency describes a rela-
tion where the results of the parent tasks are collected in a
task of the child operator. (4) Lastly, the many-to-many de-
pendency describes a relation where parent tasks and their
children tasks are co-related to each other.

Figure 2 illustrates the logical and physical DAG repre-
sentations of a simple Map-Reduce program in different data
processing engines. We have selected Map-Reduce as our
example workload for the ease of explanation, but this can be
applied to any kind of programs expressed as a DAG of com-
putations. In our example, the Map operator is expanded into
tasks of the upper row, and the Reduce operator is expanded
into tasks of the bottom row, both running on containers as
shown in the figure. We assume that containers can run both
Map and Reduce tasks. Figure 2(a) shows the logical DAG
representation of the program, in which the Reduce oper-
ator depends on the Map operator with a many-to-many de-
pendency. Due to the many-to-many dependency, each of the
Reduce tasks needs the outputs of all Map tasks as its input.
(b) and (c) each shows the physical DAG interpretation of
the logical DAG in current data processing engines without
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Figure 2. A Map-Reduce job’s logical(a) and physical DAG
representation in existing data processing engines, with-
out(b) and with(c) checkpointing, as well as in Pado (d). We
consider a case where transient containers 1 to 3 are evicted
while running the Reduce operator. The arrows indicate de-
pendencies of tasks, and red arrows indicate those of the
tasks that must be relaunched upon evictions.

and with checkpointing enabled. Lastly, (d) shows the phys-
ical DAG that Pado generates. With this setup, we explore a
case where container 4 is reserved and free from evictions,
and containers 1-3 are transient and evicted at arbitrary time.
As an eviction while executing the Map operator simply re-
sults in recomputations of evicted Map tasks, we focus on the
effect of an eviction while executing the Reduce operator in
this subsection.

In the case of general data processing engines, illustrated
in Figure 2(b), when an eviction occurs, the engines first
check whether the outputs of the parent tasks (1-4) of the
evicted tasks (5-7) are available to be reused, and see which
tasks need to be relaunched. Such engines, like MapReduce
and Spark, maintain Map task outputs on local disk, for
them to be pulled by the following Reduce tasks when

needed. Therefore, the outputs of the Map tasks 1-3 are
destroyed upon the container eviction, and they need to be
recomputed along with the evicted Reduce tasks 5-7. This
requires recomputations of a total of 6 tasks (1-3, 5-7) to
recover from the eviction, delaying the job from completion.
For more complex jobs, such as iterative algorithms, the
delay is even more amplified. For example, if tasks 1-3 also
had parent tasks that ran on transient containers, those parent
tasks need to be recomputed as well, and the same applies
for their parent tasks recursively. Such chain of cascading
recomputations are called as a critical chain [16, 17].

To address the critical chain problem and to provide
more fault-tolerance, data processing engines usually pro-
vide techniques to checkpoint intermediate results in remote
stable storages placed on reserved containers. The idea is to
checkpoint the outputs of the Map operator to remote stor-
ages to prevent recomputations of the evicted Map tasks.
As shown in our example case (c), we would only need to
recompute 3 tasks (5-7) to recover from the eviction and
complete the job, as the outputs of the evicted Map tasks
(1-3) are already checkpointed on the remote stable storages
(container 4). However, the problem of checkpointing is that
checkpointing incurs a considerable amount of additional
network and disk I/O costs, which hinder jobs from com-
pletions. This overhead can become much larger depending
on the amount of intermediate results that have to be sent
back and forth with remote stable storages. Consequently,
works like Flint [23] and TR-Spark [29] explore methods to
checkpoint only when it is needed, by making predictions
about task durations and container lifetimes to calculate re-
computation costs. Nevertheless, recomputation cost rises
under frequent evictions, and checkpointing has to be done
frequently with those engines as well. Indeed, the mentioned
works report that under frequent evictions, jobs can face se-
vere performance degradation even with their sophisticated
checkpointing mechanisms.

We propose a novel solution to overcome such limitations
of current data processing engines, as briefly illustrated in
(d). Here, we first compute the Map tasks on transient con-
tainers, and push the mapped data to reserved containers im-
mediately upon completions, for them to quickly escape the
risk of evictions. As the eviction occurs while performing
Reduce tasks, the lost data on transient containers are al-
ready transferred to reserved containers at this point, hence
there is no need for any recomputations or any checkpoint-
ing upon the eviction. This idea can be generalized for DAGs
of arbitrary length and complexity. We observe the job struc-
ture and the relationships between the operators to sort out
computations that are more likely to cause higher number of
recomputations upon evictions, like the Reduce tasks in our
example, to run them reliably on reserved containers. This is
implemented with a simple algorithm (§3.1), that observes
and processes the DAG prior to the execution, along with
a runtime (§3.2) specifically tailored for our requirements.
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With our idea, intermediate results then can be effortlessly
preserved on reserved containers without the overhead of
checkpointing or cascading recomputations.

3. Pado Design
Pado is our general-purpose distributed data processing en-
gine tailored to harness transient resources in datacenters.
Pado can be largely divided into the Compiler and the Run-
time. The Compiler translates and processes dataflow pro-
grams into a DAG of Pado Stages, each of which is a unit
of execution. The Runtime executes the processed DAG effi-
ciently under frequent evictions using a combination of tran-
sient containers and a small number of reserved containers.

3.1 Compiler
The Pado Compiler receives and processes dataflow pro-
grams, represented as logical DAGs, through two major
steps. First, the compiler places the operators in the log-
ical DAG of the given program on transient or reserved
containers. The compiler marks a set of operators that are
more likely to cause larger numbers of recomputations upon
evictions to run them reliably on reserved containers and
the rest on transient containers. Next, leveraging the place-
ment information, it partitions the logical DAG into Pado
Stages, each of which serves as a basic execution unit in
Pado. These subgraphs are later received by the Pado Run-
time to be transformed into physical execution plans and run
in distributed tasks. We describe the compilation process in
detail and show how it is applied to a number of real-world
data processing applications.

3.1.1 Operator Placement
Computations and their outputs placed on transient contain-
ers are vulnerable to data loss and recomputations due to
container evictions, whereas those on reserved containers are
free from evictions. However, as reserved containers are con-
sisted of expensive resources that cannot be yielded to any
other jobs, we need to keep the size of reserved containers
as small as possible to maximize datacenter utilization. As a
simple solution, the compiler observes the logical DAG and
carefully selects the operators that are most likely to have the
highest recomputation costs once evicted by observing their
dependencies.

In the case of a child operator with a many-to-many or a
many-to-one dependency from its parent operator, eviction
of a single task can result in recomputations of multiple
tasks of the parent operator, as it requires outputs of multiple
parent tasks, similar to Reduce tasks in the Map-Reduce
example in Section 2.2. In contrast, in the case of a child
operator with a one-to-one or a one-to-many dependency
with its parent operator, eviction of a single task only results
in a recomputation of a single additional task of the parent
operator, as it only requires the output of its single parent
task.

Algorithm 1 Operator Placement Algorithm
1: Input: Logical DAG dataflow-dag
2: Output: Logical DAG op-placed-dag
3: for op ∈ TOPOLOGICALSORT(dataflow-dag) do
4: if op.inEdges 6= ∅ then . Computational Operator
5: if op.inEdges.ANYMATCH(m-m or m-o) then
6: op.MARK(reserved)
7: else if op.inEdges.ALLMATCH(o-o) and
8: op.inEdges.ALLFROM(reserved) then
9: op.MARK(reserved)

10: else
11: op.MARK(transient)
12: else if op.inEdges=∅ then . Source Operator
13: if op.ISREAD then
14: op.MARK(transient)
15: else if op.ISCREATED then
16: op.MARK(reserved)

Based on this simple intuition, the compiler places opera-
tors with complex dependencies with parent operators on re-
served containers, and the rest on transient containers, while
being aware of data locality. The placement algorithm is il-
lustrated in Algorithm 1. The semantics of algorithms are
explained in parenthesis throughout the section.

First of all, we sort the DAG in a topological order and
observe each operator. As described in the algorithm, each
operator is placed by the following policy:

• Operators with any (ANYMATCH) incoming many-to-
many (m-m) or many-to-one (m-o) dependencies from
parent operators are placed on reserved containers. This
prevents such tasks from being evicted and prohibits mul-
tiple recomputations of parent tasks.

• Operators with all (ALLMATCH) incoming edges that
have one-to-one (o-o) dependency from parent operators
and that all come from (ALLFROM) operators placed on
reserved containers are also placed on reserved contain-
ers. This lets us exploit data locality on reserved contain-
ers.

• All operators that do not fall under the previous two
conditions are placed on transient containers. This allows
us to aggressively utilize transient containers where the
risk of cascading recomputations are not as large.

Source operators, which do not have any incoming edges,
are handled differently. Those that read their input from a
storage, such as a distributed filesystem or a disk (ISREAD),
are placed on transient containers to load large amounts of
input data using many containers. On the other hand, those
that newly create their data in memory (ISCREATED) are
placed on reserved containers as the relatively lightweight
created data can be kept on a small number of reserved
containers. Our algorithm can be applied to a logical DAG
with any length and complexity, and we can get a logical
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Algorithm 2 Logical DAG Partitioning Algorithm
1: Input: Logical DAG op-placed-dag
2: Output: DAG of Pado Stages stages
3: for op ∈ TOPOLOGICALSORT(op-placed-dag) do
4: if op.ISMARKED(reserved) or op.outEdges=∅ then
5: currStage := stages.NEWSTAGE()
6: RECURSIVEADD(currStage, op)
7:
8: function RECURSIVEADD(currStage, op)
9: currStage.ADD(op)

10: for all parentOp ∈ op.inEdges do
11: if parentOp.ISMARKED(transient) then
12: RECURSIVEADD(currStage, parentOp)
13: else if parentOp.ISMARKED(reserved) then
14: parentOp.stage.ADDCHILD(currStage)

DAG in which every operator is marked to run on either a
transient or a reserved container as a result.

3.1.2 Partitioning
To facilitate the execution and to easily keep track of the job
progress, the compiler partitions the marked logical DAG
into subgraphs called Pado Stages, each of which acts as
a basic unit of execution. The idea of partitioning is also
widely used by existing data processing engines, as it sim-
plifies the implementations of task execution and fault toler-
ance mechanisms. Nevertheless, unlike the stages in general
data processing engines, which are partitioned in the shuf-
fle boundaries, Pado partitions stages based on the operator
placement information that we have previously discussed.

The algorithm traverses the logical DAG in a topological
order and creates a new stage at each of the operators placed
on reserved containers or without any outgoing edges. At
each of such operators, its parent operators placed on tran-
sient containers are recursively added to the stage. If the par-
ent operator is placed on reserved containers, this indicates
that it belongs to a previously created stage. Algorithm 2
shows how a DAG of Pado Stages is generated.

As the result of the partitioning algorithm, computations
of a stage start on transient containers, if any exists, and fin-
ish on reserved containers, unless the DAG ends on a tran-
sient container. Also, as stages finish on reserved containers
or at the end of the DAG, it ensures that all stage outputs
are reliably conserved on reserved containers or written to
sink, minimizing the risk of data loss. With this characteris-
tic, following children stages can steadily fetch the interme-
diate results stored on reserved containers. This enables us
to simply relaunch the evicted tasks of the stage that is run-
ning at the time of evictions, without having to recompute
previous parent stages.

3.1.3 Application on Different Workloads
We use three real-world example workloads to show how our
algorithms can be applied on different cases. We use Figure 3
to visualize each of the examples.

Map-Reduce: Map-Reduce is used for various large-
scale Extract-Transform-Load (ETL) types of applications.
The compilation result is illustrated in Figure 3(a). Follow-
ing the placement algorithm 1, the Read operator and the
following Map operator are placed on transient containers.
Then, the next operator is placed on reserved containers, as
it has a many-to-many incoming edge. For partitioning, the
algorithm finds the Reduce operator on reserved containers
while traversing the logical DAG, and adds up the in-edges
placed on transient containers recursively to Stage a-1.

Multinomial Logistic Regression: Multinomial Logistic
Regression is a machine learning application for classifying
inputs, like classifying tumors as malignant or benign and
ad clicks as profitable or not [13]. Such iterative workloads
compute gradients to update the regression model, which is
used to classify results and predict outcomes for arbitrary
inputs. Its compilation result is illustrated in Figure 3(b).
As illustrated, Aggregate Gradients has a many-to-one
incoming edge, and Compute 2nd Model only has one-to-
one relations from operators on reserved containers, thus
both are placed on reserved containers. For source opera-
tors, Create 1st Model newly creates its data and hence is
placed on reserved containers, and Read Training Data

reads its data from a source, thus is placed on transient con-
tainers. The rest are placed on transient containers following
the algorithm. As a result of partitioning, we can observe
that there are three stages for the three operators on reserved
containers.

Alternating Least Squares: Alternating Least Squares
is another machine learning application used for recommen-
dation services, such as for shopping or movie recommen-
dation sites [18]. It alternates its computation and aggrega-
tion between user and item factors, and its compilation re-
sult is illustrated in Figure 3(c). The Read operator is placed
on transient containers, then operators with many-to-many
in-edges are placed on reserved containers. Compute 1st

Item Factor operator only has a single one-to-one incom-
ing edge from reserved containers and is placed on reserved
containers to ensure data locality. The rest of the operators
are placed on transient containers. By the partitioning al-
gorithm, operators placed on transient containers are recur-
sively added by the four operators on reserved containers.

Now, we describe how the Pado Runtime actually exe-
cutes the DAGs of Pado Stages.

3.2 Runtime
The Pado Runtime receives and efficiently executes the DAG
of Pado Stages with several techniques. As illustrated in Fig-
ure 4, the runtime consists of the Pado master that orches-
trates the distributed workload, and multiple Pado executors
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that carry out the actual execution. For every submission of
a dataflow program, a master is launched by the resource
manager that manages computing resources of the cluster
(§2.1). Then the container manager in the master obtains
a number of transient and reserved containers from the re-
source manager and launches them as Pado executors. The
execution plan generator generates execution plans from
the physical DAG of tasks, in which each operator of the
stages is expanded into multiple parallel tasks, and each of
the edges is translated into physical data transfers between
the tasks. The task scheduler in the master then schedules
and launches tasks of the generated execution plan in the
Pado executors by each of the partitioned stages. Here, un-
like existent runtimes that assume reserved containers, tasks
are scheduled across a combination of reserved and transient
containers. Finally, the scheduled tasks are executed in mul-
tiple threads of the executors and their intermediate results
are shuffled across executors and pushed into reserved con-
tainers to quickly escape the threat of evictions. In the mean-
while, the runtime efficiently handles evictions, and provides
several optimizations to minimize the load on the small num-
ber of reserved containers. We explain each of the compo-
nents of Pado Runtime in more detail throughout the rest of
the section.

3.2.1 Container Manager
The container manager in the master interacts with the re-
source manager to obtain, classify, and manage transient and
reserved containers. It obtains a user-configured number of
reserved and transient containers from the resource manager
and launches executors on them. We call the executors run-
ning on transient containers as transient executors, and those
on reserved containers as reserved executors. The container
manager keeps track of the executors on different types of
containers and notifies the task scheduler whenever a new
executor comes online, so that the executor can be utilized.
It also delivers container eviction notifications from the re-
source manager to the task scheduler to handle them accord-
ingly.

3.2.2 Execution Plan Generator
The execution plan generator converts the DAG of Pado
Stages created by the compiler into a physical DAG of tasks.
For each stage, neighboring operators placed on identical
types of containers are fused into a single operator to exploit
data locality. For example, a chain of Map operators placed
on transient containers are fused as a single Map operator.
Such operators are expanded into a number of multiple par-
allel tasks, which is configured by the user or determined by
the number of input data partitions. Then, edges between the
operators are converted into physical data transfers between
the tasks. For example, a many-to-many dependency can be
converted into a hash-partitioned data shuffle. The tasks of
the initial operators of each stage fetch data from reserved
executors or storages. They can then process the data and
push their outputs to their children operators. At the final
operator of each stage, the outputs are preserved on reserved
executors, and they can be later pulled by the following chil-
dren stages.

3.2.3 Task Scheduler
The task scheduler in the master schedules and distributes
tasks in the generated execution plan to reserved and tran-
sient executors. The DAG of tasks is executed stage-by-stage
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in a topological order. For each stage, the task scheduler first
schedules and sets up the tasks placed on reserved execu-
tors, so that they can be prepared to receive task outputs
pushed from transient executors. Once they are set up, the
tasks placed on transient executors are scheduled and run.
Here, each of the executors is allocated with task slots, the
size of which can be configured by the user. With a plug-
gable scheduling policy, the user can schedule each task on
a particular executor with an available task slot. By default,
the policy schedules tasks in a round-robin manner, while
utilizing data locality information as much as possible. The
policy first tries to pick an executor with the input data of the
task cached, which we will discuss further in Section 3.2.7.
If not applicable, it picks an available executor in a round-
robin manner, and waits until a task slot becomes available
if none of the executors are available.

3.2.4 Executor
Each executor has a user-configured number of threads for
executing scheduled tasks, and thus can execute multiple
tasks in parallel on separate threads. When a task on a tran-
sient executor finishes execution, it immediately notifies the
master for the task scheduler to schedule a new task to the
executor, without having to wait for the task output to be
sent. In the meanwhile, on a separate thread, the task’s out-
put is partitioned and pushed to reserved executors that are
dependent on the task. The tasks scheduled on reserved ex-
ecutors receive and process it, and finally preserve their out-
puts on its local disk for their following children stages.

3.2.5 Eviction Tolerance
Transient executors are expected to be frequently evicted
during execution, which raises the following issues. First,
task outputs can be partially pushed to only some of the
reserved executors. To address this issue, transient execu-
tors send task output commit messages to the destination re-
served executors through the master to acknowledge that all
outputs are sent to them. Only after receiving the commit
messages, the tasks on the reserved executors can process the
outputs. This ensures that the outputs are processed exactly
once. Second, we have to determine the tasks that need to be
re-executed to recover lost data. As discussed previously, an
eviction of a task of a particular stage never leads to recom-
putations of the tasks of its parent stages. Thus, the tasks of
the evicted stage can be rescheduled independently and im-
mediately upon evictions. Exploiting this property, the task
scheduler reschedules only the tasks that were scheduled in
the evicted executors, whose outputs were not transferred
and committed to their destinations.

3.2.6 Fault Tolerance
Any container can fail due to various reasons such as hard-
ware failures, which are very rare compared to container
evictions. In case of transient executor failures, the runtime
can simply use the eviction tolerance mechanisms we have

just described. However, in case of reserved executor or mas-
ter failures upon machine faults, the runtime needs to handle
them differently. First, failures of reserved executors result in
a loss of the intermediate results that were preserved on their
local disk. The runtime handles this by pausing the currently
executing stage, and observing its parent stages to recompute
those that are necessary. Specifically, it observes the parent
stages in a topological order to identify stages whose inter-
mediate results are unavailable, to relaunch the correspond-
ing tasks. Second, failure of the master results in a loss of
the execution progress record, which includes the record of
finished stages and tasks. This can be resolved by periodi-
cally replicating the progress metadata. Then, a new master
can be launched to resume from the last available progress
information upon machine failures.

3.2.7 Optimizations
Pado tries to keep the number of additional reserved contain-
ers as small as possible, since reserved containers are expen-
sive as they cannot be yielded for other jobs. However, the
small number of reserved executors and their limited com-
putational resources can become a bottleneck in job execu-
tions, if they cannot handle the load that they receive. To
mitigate this potential bottleneck issue, the runtime provides
optimizations to reduce the load on reserved executors.

Task input caching: Tasks of operators specified by the
user can cache their input data in their executor memory
once the data becomes available. When the cache memory
space gets full, evictions occur by the LRU policy. Moreover,
as mentioned earlier, the runtime provides the cache-aware
scheduling policy that distributes tasks on specific executors,
in which the input data are cached. This lets tasks scheduled
on transient executors to read the cached data instead of in-
curring data transfer from the reserved executors that they
depend on or the storage that it reads from. For example, the
transient tasks of the Compute Gradient operator in Fig-
ure 3(b) takes the latest model residing on reserved executors
as their input. Without caching, the reserved executors need
to send the model for every task of the operator. However,
with caching, it only needs to be sent once to the executors
that the tasks are allocated to.

Task output partial aggregation: Task outputs can be
partially aggregated if the aggregation logic is commutative
and associative [12]. Exploiting this property, on Pado, par-
tial aggregation occurs on the outputs of the tasks allocated
on the same transient executors and on the pushed data that
arrive on identical reserved executors. This optimization re-
duces the amount of data that reserved executors receive
and maintain. For example, the Aggregate Gradients op-
erator in Figure 3(b) computes the sum of gradients, each
of which is a vector. With partial aggregation, the number
of vectors reserved executors receive is reduced, as multi-
ple vectors computed on transient executors can be partially
aggregated into a single vector before getting sent. More-
over, reserved executors only need to maintain a single vec-
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tor by partially aggregating it with vectors getting pushed to
them on the fly. A downside of aggregation is that data stay
on transient executor for a longer time before getting sent,
which increases the risk of evictions. To solve this issue,
Pado can configure an upper limit for the time and the num-
ber of aggregated tasks, so that data escapes once it reaches
a certain point.

4. Implementation
We have implemented Pado with around 7,000 lines of code
in Java. We have integrated our implementation with big data
open source projects to facilitate real-world deployments,
and minimize boilerplate code.

First, our implementation can run dataflow programs
written with Beam [1], an open source programming model
also supported by other data processing engines like Google
Cloud Dataflow [2], Flink [3], and Spark [8]. Beam pro-
grams are represented as logical DAGs of Transforms,
which are operators for transforming one or more distributed
data sets. Example Transforms are ParDo (Parallel-Do),
which performs a parallel operation on each of input ele-
ments, and Combine, which groups all input elements by
key. Given a Beam program, our implementation first identi-
fies the data dependency type (e.g., many-to-many) of edges
between Transforms and applies the compilation algo-
rithms as described in Section 3.1. During the process, user-
defined functions and output serializers for each Transform

are extracted and saved as a part of a stage to be used by the
runtime.

Second, our implementation can run on different resource
managers like Mesos [14] and Hadoop YARN [5] using
REEF [7, 26], an open source library for developing portable
systems on different resource managers. In REEF, a job
consists of a Driver, which interacts with a resource manager
to obtain and manage containers, and multiple Evaluators,
each of which is a process running on a container managed
by the Driver. Thus, in our implementation, Pado master
runs as the Driver, and Pado executors run as the Evaluators.
Using REEF, we were able to reduce the boilerplate code
that would otherwise be required to implement the low-level
resource manager protocols, and to focus on developing the
core runtime logic described in Section 3.2.

5. Experimental Evaluation
We evaluate Pado with three different experiments to answer
the following questions:

• How Pado efficiently handles frequent evictions while
aggressively collecting idle resources.

• How Pado performs with different ratios of transient to
reserved containers.

• How Pado scales with more numbers of a fixed ratio of
transient and reserved containers.

5.1 Experimental Setup
We describe the cluster environment, the data processing
engines that we compare, and the workloads that we run on
the engines for the experiments.

5.1.1 Cluster Environment
We set up a YARN cluster on AWS EC2 instances to simu-
late a datacenter environment. Each of the instances is used
to run a transient or a reserved container. We use i2.xlarge in-
stances (4 virtual cores, 30.5GB memory, 800GB local SSD)
for reserved containers, and m3.xlarge instances (4 virtual
cores, 15GB memory, double 40GB local SSDs) for tran-
sient containers. We chose instances with fast and large lo-
cal SSDs to provide fast checkpointing and other disk oper-
ations.

Under our environment, reserved containers are never
evicted, meaning that a job is able to use them until it vol-
untarily lets them go. On the other hand, transient containers
are evicted according to different lifetime CDFs in Figure 1
that we acquired from analyzing the Google cluster trace.
As we assume that each job in our experiments uses a small
portion of total resources of the cluster, whenever an evic-
tion occurs on a transient container, we immediately provide
a new transient container with a new container lifetime.

5.1.2 Data Processing Engines
The specifications of the data processing engines we evalu-
ate in this cluster are as follows:

Spark: Spark 2.0.0 that runs executors on both transient
and reserved containers.

Spark-checkpoint: Our modified checkpointing-enabled
version of Spark 2.0.0. We modified the Spark internal task
scheduler and shuffle manager to implement task-level asyn-
chronous checkpointing, in which compressed map out-
puts, preserved on local disks, are checkpointed by sepa-
rate threads. Based on the checkpointing policy introduced
in Flint [23], Spark-checkpoint selectively checkpoints in-
termediate data. As mentioned, works like Flint usually as-
sume spot instances which are evicted on an hourly or daily
basis, whereas we assume transient containers which get
evicted on a minutewise basis. With this assumption and as
data shuffle boundaries are treated as an important point to
checkpoint due to the high recomputation cost, we have im-
plemented Spark-checkpoint to checkpoint on each shuffle
boundary. Spark-checkpoint runs executors on transient con-
tainers and uses reserved containers to run a non-replicated
GlusterFS [4] cluster as stable storages for checkpointing.
We also observed similar trends of experiment results using
a non-replicated HDFS [5] cluster as stable storages.

Pado: Our Pado implementation that runs executors on
both transient and reserved containers.

5.1.3 Workloads
On the engines presented above, we run three data analyt-
ics applications: Alternating Least Squares (ALS), Multino-
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mial Logistic Regression (MLR), and Map-Reduce (MR).
For Spark and Spark-checkpoint, we use MLlib [6] programs
for ALS and MLR, and implement MR using Spark’s pro-
gramming API. For Pado, we implement Beam programs
with the DAGs as illustrated in Figure 3. Input data are stored
on AWS S3, and read by engines upon launching the job. The
workloads for the applications are as shown below:

ALS: ALS is a workload with long and complex depen-
dencies between operators, which makes it vulnerable to
critical chains of cascading recomputations. We use a 10GB
music ratings dataset provided by Yahoo! [10], which con-
tains over 717M ratings of 136K songs given by 1.8M users.
We set rank to 50, and run 10 iterations of the algorithm.

MLR: MLR also has long, but slightly less complex
dependencies between its operators. MLR creates large
amounts of intermediate data in each iteration, which can
be partially aggregated into a small vector. We use a syn-
thetic 31GB training dataset generated with a script open
sourced as part of Petuum [28]. The dataset is a sparse ma-
trix with 500K samples of 512 classes, 100K features, and
2.5B nonzero numbers. We run 5 iterations of the algorithm.

MR: MR has the shortest and simplest dependencies
between operators among our workloads, and imposes the
largest amount of load on reserved containers for Pado. We
use a 280GB Wikipedia dump of its page view statistics [9].
The dataset consists of around a month of hourly page view
counts of document. We compute the sum of page views for
each of the documents over the month.

We run the experiments five times and report the averages
with error bars showing standard deviations.

5.2 Eviction Rate
As discussed in Section 2.1, an effective way to increase
datacenter utilization is by collecting idle resources to run
transient containers. However, such containers are evicted
more frequently as resources are collected more aggres-
sively. Therefore, it is crucial for data processing engines to
complete their jobs while handling frequent evictions with
minimum delays. We observe the effect of different eviction
rates on job completion times (JCTs) of different engines for
each of the workloads.

In this experiment, we simulate datacenter environments
with different safety margins by varying the eviction rate for
transient containers with different lifetime CDFs illustrated
in Figure 1 and Table 1. The CDFs show the low, medium,
and high eviction rates. As the baseline, we also experi-
ment without any evictions on transient containers, which
is shown as the none eviction rate. We use 40 transient con-
tainers and 5 reserved containers to run the workloads, with
an additional reserved container for the master process of
the engines to run on. The numbers demonstrate the effec-
tiveness of Pado with a relatively small number of reserved
containers. We discuss the effect of different ratios of tran-
sient to reserved containers and different sizes of cluster in
more depth in Section 5.3 and Section 5.4.

 0
 15
 30
 45
 60
 75
 90

None Low Medium High

JC
T

 (
m

)

Eviction Rate

Spark
Spark−checkpoint
Pado

0%

10%

20%

30%

40%

50%

Low Medium High

R
el

au
n

ch
ed

 T
as

k
s

Eviction Rate

Spark
Spark−checkpoint
Pado
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tasks to original tasks in ALS under different eviction rates

5.2.1 Alternating Least Squares
The results of running ALS according to different eviction
rates are as shown in Figure 5. Spark finishes the job in 13
minutes without any evictions, but does not finish for more
than 90 minutes under the medium and high eviction rates.
On the other hand, the job completion times of both Spark-
checkpoint and Pado increase smoothly with higher eviction
rates. Yet, Pado outperforms Spark-checkpoint at all eviction
rates. Under the high eviction rate, Pado is 2.1× faster than
Spark-checkpoint and 4.1× faster than Spark.

In Spark, task outputs are preserved on local disks and
pulled by the children tasks between shuffle boundaries.
Thus, an eviction of a transient container can result in a
loss of intermediate results of all previous iterations. As dis-
cussed previously in Section 2.2, this creates a critical chain
of cascading recomputations. For example, Spark can only
relaunch the tasks of an iteration, only if it has the results of
its previous iteration, and the same applies recursively. Thus,
tasks of different iterations cannot be relaunched in parallel,
as each of the iterations is dependent on its previous iter-
ation. When an eviction occurs, Spark has to relaunch the
tasks that output the lost data to recover from the eviction,
from the initial iteration. This can delay the job greatly, as
evictions can occur while running the recomputation itself,
thus critical chains can repeatedly occur, further delaying the
job from completion. Indeed, we found Spark recomputing
identical iterations dozens of times under the high eviction
rate. This makes Spark severely degrade with 31% of origi-
nal tasks being relaunched under the high eviction rate.

In Spark-checkpoint, task outputs are checkpointed to sta-
ble storages on reserved containers, safe from evictions. This
lets Spark-checkpoint avoid the cascading recomputations
that Spark suffers from. Upon evictions, Spark-checkpoint
only needs to relaunch the tasks that were running on the
evicted transient containers. As a result, its job completion
time marginally increases with higher eviction rates.



585

 0
 30
 60
 90

 120
 150
 180

None Low Medium High

JC
T

 (
m

)

Eviction Rate

Spark
Spark−checkpoint

Pado

0%
10%
20%
30%
40%
50%
60%

Low Medium High

R
el

au
n

ch
ed

 T
as

k
s

Eviction Rate

Spark
Spark−checkpoint
Pado

Figure 6. Job completion times, and ratio of relaunched
tasks to original tasks in MLR under different eviction rates

However, checkpointing incurs the overhead of transfer-
ring data back and forth with the stable storages. We found
that a total of 279GB of data were checkpointed to the sta-
ble storage during the execution of the ALS workload with-
out repetitions caused by relaunched tasks. Sending the data
does not incur much overhead, since each task output can be
sent independently and asynchronously. Nonetheless, fetch-
ing the data incurs a large overhead. Due to pull-based data
shuffles, children tasks can only start after their parent tasks
finish and checkpoint their outputs, after which the check-
pointed data are pulled all at once. In Spark-checkpoint the
data are served by the 5-node stable storages, whereas they
are served by 45 executors in the original Spark. The reduced
disk and network bandwidth slows down the data transfer
and greatly increases the time to fetch the data.

In Pado, most computations are run by the tasks on tran-
sient executors, and their outputs are pushed to reserved ex-
ecutors to be aggregated. Thus, the aggregation occurs on
reserved executors and its intermediate results are reliably
retained on them, preventing cascading recomputations. For
this workload, although the aggregation does not reduce the
size of the data, executors can retain intermediate results
within the memory. Therefore, Pado can fetch intermediate
results much faster than using stable storages. This makes
Pado faster than Spark-checkpoint at all eviction rates.

5.2.2 Multinomial Logistic Regression
The results of MLR are shown in Figure 6. Under the high
eviction rate, Pado is 2.7× faster than Spark-checkpoint and
more than 3.5× faster than Spark. Pado outperforms Spark-
checkpoint even more compared to ALS, due to the larger
amount of intermediate data created in each iteration. Each
MLR iteration consists of 550 map tasks, each of which
computes a gradient vector using a partition of the training
data and the latest model, followed by a tree-aggregation
of the vectors to update the model. The tree-aggregation is
performed differently in each of the engines.
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Figure 7. Job completion times, and ratio of relaunched
tasks to original tasks in MR under different eviction rates

In Spark, 550 gradient vectors computed by the map tasks
are preserved in the local disks of the executors. Then, each
of the 22 aggregate tasks pulls 550/22 vectors, and aggre-
gates them into a single gradient vector. Finally, the 22 ag-
gregated vectors are sent to the master process, which uses
them to update its model. As the master process is never
evicted, the critical chain does not exceed the current iter-
ation, unlike ALS. Nonetheless, MLR iterations are much
longer than ALS iterations, due to the time it takes for the
gradient vector computation. Thus, the loss of preserved vec-
tors upon evictions causes Spark to degrade severely with
higher eviction rates.

In Spark-checkpoint, map task outputs are checkpointed
to the stable storages on reserved containers, immediately af-
ter they are computed on transient containers. Although this
prevents recomputations, each compressed map task output
vector is 323MB in size, and around 173GB (323MB ∗ 550
tasks) of data have to be checkpointed in each iteration.
Moreover, the data also need to be fetched back to transient
containers for the following aggregate tasks. This check-
pointing process requires transferring large data repeatedly,
greatly delaying the work.

In Pado, gradient vectors are partially aggregated with
other gradient vectors computed on the same transient con-
tainer. Then, the partially aggregated vectors are pushed to
aggregate tasks on eviction-free reserved containers, which
prevents costly losses of the gradient vectors and task re-
launches. As Pado sends less data to reserved containers
with partial aggregation, it reduces the load on reserved con-
tainers. Only an average of 303 partially aggregated vectors
were sent, in contrast to the 550 gradient vectors in Spark-
checkpoint. Moreover, Pado does not need to transfer the
data back to transient containers for aggregation. Instead,
the aggregate tasks on reserved containers can directly re-
ceive the data and aggregate them into a single vector on
the fly. This creates a great difference in performance since



586

 0

 20

 40

 60

 80

3 4 5 6 7

JC
T

 (
m

)

Number of Reserved Containers

(a) ALS

Spark−checkpoint
Pado

 0
 50

 100
 150
 200
 250
 300

3 4 5 6 7

JC
T

 (
m

)

Number of Reserved Containers

(b) MLR

Spark−checkpoint
Pado

 0

 10

 20

 30

 40

 50

3 4 5 6 7

JC
T

 (
m

)

Number of Reserved Containers

(c) MR

Spark−checkpoint
Pado
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containers under the high eviction rate

Spark-checkpoint has to checkpoint large amounts of data
repeatedly.

5.2.3 Map-Reduce
The results of MR are shown in Figure 7. Unlike other
workloads, Spark performs better than other engines up to
medium eviction rate, as the short and simple dependen-
cies make evictions less costly for Spark. However, under
the high eviction rate, where we reclaim idle resources ag-
gressively, Spark degrades significantly even with a simple
MR job. Under the high eviction rate, Pado is 1.3× faster
than Spark-checkpoint and 5.1× faster than Spark. Although
Pado still outperforms Spark-checkpoint, the difference is
not as great as in other workloads. The main reason is that
the load on reserved containers is much heavier with MR.

In summary, Pado allows datacenters to aggressive col-
lect transient resources from unused idle resources of over-
provisioned latency-critical jobs to increase datacenter effi-
ciency. As discussed, although the eviction rate rises with
the aggressiveness of resource collection, Pado can still run
various data analytic jobs under such harsh conditions.

5.3 Ratio of Transient to Reserved Containers
In this experiment, we investigate how using different ratios
of transient to reserved containers affect job performance.
We fix the eviction rate of 40 transient containers to the
high eviction rate, and vary the number of reserved contain-
ers from 3 to 7. As Spark degrades severely with the high
eviction rate with all workloads, we only compare Spark-
checkpoint and Pado.

As shown in Figure 8, less reserved containers degrades
the performance of both Spark-checkpoint and Pado. Spark-
checkpoint degrades mainly due to the reduced throughput
of stable storages, whereas Pado degrades due to the re-
duced throughput of reserved executors. However, the trend
of the slopes vary with different workloads. For ALS(a)
and MLR(b), the slope of degradation for Spark-checkpoint
is much greater than that of Pado, as Pado can run in-
memory processing for intermediate results, whereas Spark-
checkpoint suffers from the checkpointing cost on the small
number of stable storages. However, for MR(c), the slope of
degradation for Pado is slightly greater than that of Spark-
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checkpoint, as the workload for the comparatively large Re-
duce operation is divided among the small number of re-
served containers, whereas Spark-checkpoint distributes the
work among all of its transient containers. Therefore, reduc-
ing the number of reserved containers from 7 to 3 causes
Pado to slow down by around 2.6× for the MR workload.
Nevertheless, Pado still outperforms Spark-checkpoint un-
der every number of reserved containers, as in the case of
the MLR workload (by 3.8×).

To summarize, Pado can execute various data analytics
workloads efficiently even when the ratio of transient to
reserved containers is as high as 40:3. Thus, by using Pado,
we can save reserved containers, and instead use them for
other purposes, such as for running latency-critical jobs.

5.4 Scalability
In this experiment, we vary the numbers of a fixed 8 : 1 ratio
of transient and reserved containers to evaluate the scala-
bility of Pado. We experiment under the high eviction rate
of transient containers. As shown in Figure 9, all workloads
scale on Pado with larger numbers of containers. Nonethe-
less, ALS scales relatively worse than the other workloads,
as it is a more communication-intensive workload. Overall,
this shows that Pado scales well with additional reserved and
transient containers even under very frequent evictions.

6. Discussion
Pado focuses on observing the DAG and the relationships be-
tween operators to run data analytic jobs reliably under harsh
conditions where evictions occur very frequently. While our
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work performs well in such environments, we suggest di-
rections in improving our system further to achieve better
performances and datacenter utilization.

Datacenter Resource Scheduling: Harvest [32], a work
concurrent to ours, focuses on the resource manager to solve
a common goal with our system, which is to maximize dat-
acenter utilization by using idle over-provisioned resources
to run data analytic jobs. Our approach tries to overcome
the frequent evictions that occur with transient resources,
whereas Harvest [32] tries to minimize the number of evic-
tions by using historic information to predict transient re-
source lifetimes to place them with workloads of adequate
lengths. For example, it preferably schedules long jobs on
transient resources that are less likely to be evicted, while
scheduling short jobs on resources with short, unpredictable
lifetimes. Harvest [32] and Pado tackle the problem with dif-
ferent aspects, and we believe that the techniques introduced
in two systems are complementary. Moreover, as Pado en-
ables workloads to run on resources with even shorter and
more unpredictable lifetimes, workloads are less strictly af-
fected by resource lifetimes. This enables resource managers
to become more flexible when assigning workloads to re-
sources of different lifetimes and enable resource managers
to collect transient resources more aggressively. An interest-
ing future research direction is to allow jobs to request re-
sources with preferred resource lifetimes to further enhance
resource managers to effectively collect and allocate idle re-
sources to different workloads with an optimal combination
of resources.

Operator Placement Optimization: With the suggested
approach above, estimation of transient resource lifetimes [32]
can be used to categorize resources into different lengths.
Using this information, we can extend Pado to further op-
timize the placement algorithm to place operators on re-
sources of different lifetimes in a more fine-grained manner.
For instance, we may place the operators that are expected
to have higher recomputation costs with reserved resources
or those that have longer lifetimes, while placing less costly
operators on resources with shorter lifetimes. This approach
can further be optimized by dynamically placing and parti-
tioning the DAG and its operators based on runtime metrics
and operator statistics. Through this approach, we may place
operators more optimally and better balance the load across
resources with different lifetimes. For example, in the MR
example illustrated in Figure 8, we can dynamically mi-
grate work from reserved resources to transient resources
with relatively long lifetimes to reduce the computational
delay caused by the small number of reserved resources.
By alleviating the load on reserved resources, we can also
overcome workloads with deeper graphs where a larger por-
tion of operators are placed on reserved resources due to the
increased recomputation costs. Implementation and evalua-
tion of our proposed techniques running other workloads of
various depths and complexities are left as future work.

7. Related Work
Pado is designed to run dataflow programs represented as a
logical DAG of operators, like other general-purpose data
processing engines [12, 15, 31]. Here, each operator is
scheduled as tasks and executed in parallel on multiple dis-
tributed containers. It also shares some fault-tolerance mech-
anisms to recover by recomputing from a certain point in the
logical DAG. However, as Pado primarily focuses on har-
nessing transient resources in datacenters, the core runtime
mechanisms, such as task scheduling and data transfer, are
very different from other data processing engines.

To prevent loss of data during computations, recent works
have come up with intelligent methods of checkpointing
to efficiently handle data loss and interruptions. Flint [23]
checkpoints the frontier of the RDD [31] lineage graph in
every dynamically updated intervals. TR-Spark [29] priori-
tizes tasks that output the least amount of data, and performs
task-level checkpointing according to resource instability.
The common assumption of such works are that container
evictions occur on an hourly, or on a more moderate basis,
as they target spot instances. However, our goal is to use
transient containers made up of the leftover idle resources
reserved by LC tasks, which get evicted on a minutewise
basis. Under such harsh conditions of transient resources,
checkpointing has to be done very frequently, which leads
to poor performances. To step away from the idea of check-
pointing, Pado instead observes logical DAGs, and places a
set of carefully chosen computations and the corresponding
intermediate results reliably on reserved containers.

Realizing the considerable extra cost in checkpointing,
there is also research on specialized processing systems
that exploit domain-specific properties, like the conver-
gence property, of particular workloads to infer the lost
data [20, 22]. However, they also have limitations as they
have not been designed as generic DAG processing systems,
and usually give up the completeness of the result to avoid
checkpointing costs. As these systems also do not target
environments with frequent evictions, the completeness of
their results can drop significantly, providing incorrect re-
sults and requiring more iterations to converge. On the other
hand, Pado accurately executes general dataflow programs
efficiently using transient containers without such restric-
tions and limitations.

8. Conclusion
A major problem in modern datacenters is that large amounts
of resources are left idle and wasted. Running batch jobs
on such transient resources increases datacenter utilization,
but evictions occur very frequently on transient containers.
Due to this characteristic, general data processing engines
have difficulties in running jobs under such harsh conditions.
They perform poorly with the cost of cascading recompu-
tations, and incur substantial checkpointing costs, signifi-
cantly slowing down the job. Pado steps away from current
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approaches and focuses on the job structure to run a set of
carefully selected computations, based on the relationship
between dependent operators, and retain intermediate results
reliably on stable reserved containers. Using the Pado Com-
piler with the placement and the partitioning algorithm, as
well as the Runtime with several optimizations, data pro-
cessing workloads can run efficiently using transient con-
tainers. Evaluation results show that Pado outperforms Spark
2.0.0 by up to 5.1×, and checkpoint-enabled Spark by up to
3.8×. We believe Pado can significantly increase datacenter
utilization by efficiently using the wasted idle resources in
current datacenter environments.
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